日志

Hadoop之HDFS(NameNode、DataNode、SecondaryNameNode)

HDFS(hadoop分布式文件系统)是Hadoop的核心组成部分,HDFS采用master/slave架构,一个HDFS集群由一个NameNode(不考虑HA/Federation)和多个DataNode组成

hdfs架构

HDFS架构图(via Apache Hadoop)

一、NameNode

  • NameNode是HDFS的中心,也称作Master
  • NameNode只保存HDFS的元数据,负责管理HDFS的命名空间(namespace)和控制文件的访问操作
  • NameNode不保存任何实际的数据或数据集,真正的数据由DataNode负责存储
  • NameNode拥有HDFS内所有文件的数据块(blocks)列表及其位置,因而NameNode能通过这些数据块信息来重构对应的文件
  • NameNode是HDFS的核心,一旦NameNode挂了,整个集群将无法访问
  • NameNode具有单点故障问题(Hadoop2之后可以通过High Available方案解决)
  • NameNode需要配置相对较多的内存(相比DataNode而言),因为NameNode会把HDFS的命名空间和文件数据块映射(Blockmap)保存在内存中,这也意味着集群的横向扩展受到NameNode的限制,因为集群增长到一定的规模后NameNode需要的内存也会更大,另外由于所有的元数据操作都需要通过NameNode进行,这意味着集群的性能受到NameNode的限制(Hadoop2之后可以通过Federation方案解决)
  • NameNode有两个核心的数据结构,FsImage和EditsLog,FsImage是HDFS命名空间、文件数据块映射、文件属性等信息的镜像,EditsLog相当于一个日志文件,它记录了对HDFS元数据进行修改的所有事务操作,当NameNode启动时会首先合并FsImage和EditsLog,得到HDFS的最新状态然后写入FsImage镜像文件中,并使用一个新的EditsLog文件进行记录

SecondaryNameNode

“SecondaryNamenode”这个名字具有误导性,它不能和DataNode交互,更不能替代NameNode,相反它是用来弥补NameNode的一些缺点,由于NameNode启动时会合并FsImage和EditsLog,但随着集群的运行时间变长,EditsLog会变得非常庞大,这意味着下一次启动需要花很长的时间来进行合并操作.

SecondaryNameNode负责解决以上的问题
阅读全文

日志

大数据的技术生态圈

本文来源知乎一个题为“如何用形象的比喻描述大数据的技术生态?”的精彩回答

大数据本身是个很宽泛的概念,Hadoop生态圈(或者泛生态圈)基本上都是为了处理超过单机尺度的数据处理而诞生的。你可以把它比作一个厨房所以需要的各种工具。锅碗瓢盆,各有各的用处,互相之间又有重合。你可以用汤锅直接当碗吃饭喝汤,你可以用小刀或者刨子去皮。但是每个工具有自己的特性,虽然奇怪的组合也能工作,但是未必是最佳选择。

大数据,首先你要能存的下大数据

传统的文件系统是单机的,不能横跨不同的机器。HDFS(Hadoop Distributed FileSystem)的设计本质上是为了大量的数据能横跨成百上千台机器,但是你看到的是一个文件系统而不是很多文件系统。比如你说我要获取/hdfs/tmp/file1的数据,你引用的是一个文件路径,但是实际的数据存放在很多不同的机器上。你作为用户,不需要知道这些,就好比在单机上你不关心文件分散在什么磁道什么扇区一样。HDFS为你管理这些数据。

存的下数据之后,你就开始考虑怎么处理数据

虽然HDFS可以为你整体管理不同机器上的数据,但是这些数据太大了。一台机器读取成T上P的数据(很大的数据哦,比如整个东京热有史以来所有高清电影的大小甚至更大),一台机器慢慢跑也许需要好几天甚至好几周。对于很多公司来说,单机处理是不可忍受的,比如微博要更新24小时热博,它必须在24小时之内跑完这些处理。那么我如果要用很多台机器处理,我就面临了如何分配工作,如果一台机器挂了如何重新启动相应的任务,机器之间如何互相通信交换数据以完成复杂的计算等等。这就是MapReduce / Tez / Spark的功能。MapReduce是第一代计算引擎,Tez和Spark是第二代。MapReduce的设计,采用了很简化的计算模型,只有Map和Reduce两个计算过程(中间用Shuffle串联),用这个模型,已经可以处理大数据领域很大一部分问题了。

那什么是Map什么是Reduce?

阅读全文