日志

K-Means聚类算法(实践篇)– 基于Spark Mlib的图像压缩案例

Spark Mlib 机器学习库集成了许多常用的机器学习算法,本文以K-Means算法为例结合图像压缩案例,简单介绍K-Means的应用。关于K-Means算法理论可以参考 → K-Means聚类算法(理论篇)

案例介绍

图像压缩

1)一张图由一系列像素组成,每个像素的颜色都由R、G、B值构成(不考虑Alpha),即R、G、B构成了颜色的三个基本特征,例如一个白色的像素点可以表示为(255,255,255)。

2)一张800×600的图片有480000个颜色数据,通过K-Means算法将这些颜色数据归类到K种颜色中,通过训练模型计算原始颜色对应的颜色分类,替换后生成新的图片。

Spark Mlib K-Means应用(Java + Python)

阅读全文